
 

Euskalingua 2007,10,87-92  © Mendebalde Kultura Alkartea, 2008 87 

Detecting voice pitch in adverse conditions 

Ibon Saratxaga, Iker Luengo, Eva Navas, Inmaculada Hernáez, Jon Sánchez, Iñaki Sainz, 

Imanol Madariaga 

University of the Basque Country 

ibon.saratxaga@ehu.es, ikerl@aholab.ehu.es, eva.navas@ehu.es, inma.hernaez@ehu.es, jon.sanchez@ehu.es, 

inaki@aholab.ehu.es, imanol@bips.bi.ehu.es 

Abstract 
The need for tools to detect the value of voice pitch (tone, F0 value) in noisy environments has increased in recent years due to new 
voice coding and voice recognition and conversion systems. This paper presents a detection algorithm which is sufficiently robust to 
operate in noisy environments, using cepstrum coefficients in combination with the Viterbi algorithm. The algorithm has therefore 
been evaluated with a specific database, and its performance compared to other algorithms. 
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1. Introduction 

F0 detection and marking have been extremely 
important from the beginnings of research into the 
voice. Calculating F0 has always been an essential 
factor in research into intonation, and new applications 
which have emerged - recognition of emotions (Navas 
et al., 2005), tone recognition of languages (Huang and 
Seide, 2000), voice conversion (Ney et al., 2004), 
speaker recognition (Kim et al., 2004) or confirmation 
(Luengo et al., 2006) – have revived the need for robust 
pitch detection and marking systems, and there is a 
particular need for systems which can operate with 
signals picked up in noisier environments outside 
recording labs. 

With this in mind, a work team at the ECESS 
(European Center of Excellence on Speech Synthesis, 
www.ecess.eu) spearheaded a campaign to evaluate F0 
detection algorithms. To this end a voice database was 
set up, hand-marked and visually checked (Kotnik et al., 
2006). Our team took part in the evaluation with its 
improved version of the pitch detection algorithm. The 
results were presented at an ECESS meeting in Maribor, 
Slovenia, on 5 July 2006. 

It is this pitch detection module which is presented 
here. The next section will provide a detailed 
explanation of the various blocks which make up the 
module. There follows a description of the 
characteristics of the evaluation along with the results 
obtained, compared to the published results of a number 
of other algorithms. The paper finishes with a summary 
of the results and some possible improvements. 

2. Pitch detection module 

The pitch detection module ascertains the voice 
signal tone values at each instant, plotting the points on 
the tone trend curve. An algorithm based on the values 

of cepstrum coefficients is used to obtain this curve, and 
one such device is the Viterbi algorithm. 

The curve thus obtained is post-processed in a 
smoothing block together with information on the 
voiced or unvoiced nature of each signal interval. 

Figure 1 shows the structure of the tone detection 
module. The only input it requires is the voice signal. 
This constitutes a considerable advantage, since it 
enables curves to be obtained for any unknown signal, 
without the pre-processing required by a number of 
other systems (to obtain phonetic segmentation, for 
instance). 

Figure 1: Expression of the pitch detection module 

block  

The result of the algorithm is a PCM-format file 
containing pitch values in the sampling frequency 
determined by the user. The specific steps followed to 
obtain these values are set out below.  
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2.1. Windowing 

It is necessary to conduct an examination of the 
periodicity or non-periodicity of the signal at each 
moment over a significant interval. In order to detect 
signal periodicity, windowing must be carried out using 
an interval which is sufficiently long but also short 
enough to allow no time distinction to be lost. 

The window must include at least two pitch periods 
for good detection of periodicity. The lowest pitch 
expected is set, and in accordance with this the window 
will have the length of the two periods during the entire 
analysis. 

This is a Hamming window, which reduces the 
edges, and so the effective length is shorter than two 
pitch periods. 

2.2. Determining voiced or unvoiced 

To determine whether a voice interval is voiced or 
unvoiced, we calculate the ratio between its strength P 
and Zero Crossing Rate, ZCR. The formula below is 
used to calculate the strength of the voice interval: 

 

 

 

where x[i] are N samples of the windowed signal 
interval. 

Standardised ZCR is obtained by counting up the 
number of times the signal crosses zero and dividing 
this by the number of signal interval samples. 

The division of P and ZCR reinforces the two 
independent measurements of the voiced/unvoiced 
feature. On the one hand, unvoiced signals have more 
high frequency than voiced signals, and thus the ZCR is 
greater. On the other, strength tends to be lower in 
unvoiced sounds. As a result, the P/ZCR ratio will be 
low in unvoiced signal intervals, and much greater in 
voiced signal intervals. 

2.3. Calculation of cepstrum coefficients 

The first step in calculation of the F0 value of the 
signal interval consists of calculating its cepstrum 
coefficients. The cepstrums take up the logarithms in 
the signal’s Fourier transform, and these are obtained 
through the inverse transform 

Where pitch values are physiologically defined, 
there is no need to calculate all the cepstrum 
coefficients. Thus at the outset the fmin minimum 
frequency / fmax maximum frequency interval is 
calculated, and only the maximums of the coefficients 
will be sought within that interval. 

 x[n] = TF-1 {log(X (Ω))} 

 where X (Ω) = TF {x[n]}  

The next phase consists of finding the maximums 
for this group of coefficients, and to this end all the 
coefficients are standardised with a mean value. 

The largest M coefficients found are taken to the 
next block, the Viterbi algorithm block, for selection. 
Another coefficient is added,  

“non-frequency”, in order to show that the signal 
interval is unvoiced. 

2.4. Viterbi algorithm 

The possible M+1 values which provide the best 
pitch curve following calculation of all intervals making 
up the signal must be chosen. This is done using the 
Viterbi algorithm, choosing values which minimise the 
sum of the two cost functions: local cost (the cost of 
simply choosing a value) and transition cost (the cost of 
choosing a value, taking due account of the value 
chosen in the previous signal interval). 

Local cost is calculated using two components. The 
first component takes account of the fact that usually 
the value of F0 is linked to the highest cepstrum 
coefficient. 

The second component of local cost, if the signal 
interval is voiced, takes account of the fact that the 
cepstrum value must be to a certain extent greater than 
the mean cepstrum value. 

Transition cost also has two components. The first 
holds the criteria that the pitch curve, in voiced 
intervals, is that which continues with no sudden drops. 

Excessively rapid changes could be due to selection 
of the wrong frequency, F0 harmonic or subharmonic. 

Lastly, the second component of transition cost 
causes excessively rapid changes from voiced to 
unvoiced and vice-versa, since voiced or unvoiced 
situations persist over a considerable period. 

With these cost functions, the Viterbi algorithm 
finds the curve which obtains the lowest accumulated 
cost. There may, however, still be occasional erroneous 
pitch values on this curve, and the result of the 
voiced/unvoiced detector is not used. It is the last block 
which does this. 

2.5. Smoothing 

The curves obtained from the Viterbi algorithm may 
be erroneous values, particularly when periodicity is 
unclear, and the information provided by the block 
specifying the voiced or unvoiced feature can be 
extremely useful. 

Moreover, it is known that a speaker’s tone follows 
the lognormal statistical distribution (Sonmez et al., 
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1997). We may feel that values which deviate too much 
from the mean of this distribution are wrong, and so 
typical deviation and the mean of all pitch curve values 
are taken into account. 

If the value of a pitch is too far from the mean it is 
eliminated, and the signal interval is marked as 
unvoiced. Subsequently, however, if the 
voiced/unvoiced detector says the signal is voiced, then 
the new pitch value is interpolated – intermediate of the 
surrounding instants’ pitch values. 

Even if, on the other hand, the voiced/unvoiced 
detector says the signal is unvoiced, if the Viterbi 
algorithm has suggested an appropriate pitch value, this 
course is followed.Irudiak ere sar ditzakezu, baina beti 
ere zenbatuta. Mesedez, testuan bertan irudia aipatu, 
batzutan mugitzen dira eta. Ikus 1. Irudia, esate 
baterako. 

3. Evaluation 

To evaluate the effectiveness of pitch measurement 
tools, their results must be compared with a group of 
signals whose pitch is known. The ECESS consortium 
made arrangements for the evaluation of pitch marking 
and detection tools, and provided a database of hand-
marked signal and pitch curves to this end. The next 
section contains an explanation of the characteristics of 
the database in order to specify the results of evaluation. 

3.1. Evaluation database 

The database used was a subgroup of the Spanish 
SPEECON database. SPEECON databases were 
recorded in accordance with the European 
Commission’s SPEECON project conditions (Iskra et 
al., 2002), and voice signals were recorded in various 
acoustic environments for the purposes of voice 
recognition (cars, offices, streets etc.). 

The signals were recorded on four channels with 
simultaneous pick-up through different microphones. 
The first channel (C0) was recorded with a microphone 
hooked up to earphones, channel C1 with a Lavalier 
lapel microphone, channel C2 with a direction 
microphone at a distance of one metre from the speaker, 
and channel C3 with a multi-direction microphone 
positioned 2 or 3 metres from the speaker. 

The signal-to-noise ratio (SNR) varies considerably 
between the different channels under these conditions. 
Through the clearest channel, C0, SNR is 30 dB, and at 
the other end of the scale it is 0 dB on channel C3. 

60 speaker sentences were chosen to create the 
reference database (Kotnik et al., 2006), spoken by 30 
men and 30 women between 19 and 79 years old. A 
one-minute recording was made for each speaker, and 
thus a total of 60 minutes for each channel. From the 
point of view of semantics, sentences from a variety of 
corpuses were used. 

The channel C0 signals carrying least noise were 
automatically marked for pitch period, and all of them 
were then checked manually and corrected. The tone 
values were taken from these marks at millisecond 
intervals. 

Since the recordings were made simultaneously for 
all four channels, the pitch values will be the same for 
all, and will only be more or less delayed because sound 
has travelled a greater or shorter distance from the 
speaker to the microphone. To allow the same 
references to be used on all channels, these delays were 
equalled out by realigning the recordings, and cross-
correlation measuring with channel C0. 

3.2. Evaluation criteria 

Several common measures found in literature on this 
topic (Sun, 2002) were specified to gauge the 
effectiveness of the pitch detection module. 

• High or low error values: these error rates 
measure which percentage is 20% above or 
below the correct value of the pitch - Gross 
Error High (GEH) and Gross Error Low 
(GEL), which are represented as 
accumulations to provide some idea of the total 
error. Silences and unvoiced intervals have no 
effect on these errors. 

• Percentage error of voiced and unvoiced signal 
intervals: the percentage error of voiced signal 
intervals (voiced error, VE) measures how 
many intervals are classified as unvoiced error. 
In similar fashion, the percentage error of 
unvoiced signal intervals (unvoiced error, UE) 
measures how many signals are classified as 
voiced error. 

• Differences in mean and standard deviation: 
these measure the difference between the mean 
and standard deviation of the estimated and 
real pitch curve. 

3.3. Results 

The results set out below were obtained by choosing 
the parameters which produced acceptable results for all 
categories and channels. When tests were carried out, 
the parameter structures which improved the results of 
each criterion or channel were observed, and so better 
results may be obtained than those appearing here for 
each specific application. 

Table 1 below shows the results thus obtained: 
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 C0 C1 C2 C3 

VE(%) 9,94 22,62 28,41 35,62 

UE(%) 7,44 7,35 6,93 7,35 

GEH(%) 0,65 0,31 0,57 0,97 

GEL(%) 1,99 2,38 2,45 2,40 

AbsMeanDiff(Hz) 0,54 1,87 7,57 11,92 

AbsStdDiff(Hz) 1,45 4,46 4,86 6,03 

Table 1: Final results 

We will divide the results into three groups for the 
purposes of examination. On the one hand we have the 
two measurements for voiced/unvoiced errors, UE and 
VE (Graph 2). The block using Pot/ZCR is extremely 
noise-sensitive, and so it was not used on the noisy 
channels. On channels C1, C2 and C3, therefore, the 
voiced/unvoiced distinction is only deduced from the 
cepstrum coefficients. The other parameters remain 
unchanged for all measurements and channels. 

In any case, the precision of classification rapidly 
deteriorates as channel noise increases, and the results 
are unimpressive. However, as we will observe in the 
comparison, the classification obtained is one of the 
best among the algorithms examined.  

Figure 2: VE/UE trend in the channels 

Moreover, obtaining the pitch value every 
millisecond (4 or 10 values during each pitch period) 
could create doubts with regard to the utility of this 
error measurement. At the beginning and end of a 
voiced signal section, at what points on the initial and 
end thresholds of the pitch periods should the 
voiced/unvoiced change be marked? 

The next error pair is Gross Error High GEH and 
Gross Error Low GEL. The results are good in both 
these measurements for all channels – they rise only 
slightly even when noise increases, and the sum of both 
remains around 3% (see Figure 3). 

 

 

 

 

 Figure 3: GEH/GEL trend in the channels 

These two errors, the difference in mean and 
standard deviation of the real pitch curve and the 
estimated pitch curve, show a greater increase as the 
result of channel noise, as shown in Figure 4 below. 

Figure 4: Difference in mean and standard deviation for 

each channel 

3.4. Comparison of results 

In order to compare the quality of the results we 
obtained in our measurements with other algorithms, we 
performed the same measurements with the Praat 
programme autocorrelation algorithm (Boersma et al., 
web). This performs autocorrelation of the windowed 
signal interval over more than one pitch period, dividing 
up window autocorrelation to eliminate the window’s 
harmful effects (Boersma, 1993). 

Moreover, the results obtained with another two 
algorithms have also been published (Kotnik et al., 
2006) - the results of the authors’ algorithm (KOT), 
those based on the Hilbert transform of LPC residues, 
and the results obtained by Goncharoff (Goncharoff and 
Gries, 1998), based on detection of the periodicity of 
short-term signal energy, with suitable parameters 
selected dynamically. 

The results of our module and the other three sets of 
results are compared below. 
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3.4.1. Accumulated voiced and unvoiced interval 
errors 

Figure 5: VE+UE comparison for each channel 

We have mentioned the relative weakness of these 
measurements in that time algorithms produce better 
results in the absence of noise in channel C0. Time 
algorithms using ZCR, however, quickly fail, although 
cepstrum detection is much better (Figure 5). 

3.4.2. Accumulated higher and lower pitch value 
errors 

In all cases the results of the pitch as measured are 
ideal (Figure 6). When all channels are good, 
improvement in the others increases in proportion to the 
increase in sound from the channel. 

 

 

 

 

 

 

Figure 6. GEL+GEH in all channels 

3.4.3. Variations in statistical values 

Variations in mean values are almost negligible at 
the start for channel 0, and increase along with noise 
(Figure 7), although the increase is smaller than the 
increase in the other algorithms. 

 

 

 

 

 

 

 

Figure 7. Difference in mean values, all channels 

From the point of view of standard deviation (Figure 
8), values increase with noise in all cases, and in this 
case as they increase slowly, our results are better than 
others in the noisy channels. 

Figure 8. Differences in standard deviation 

4. Conclusions 

The conclusions of the evaluation of the algorithm 
proposed to detect tone are extremely encouraging. The 
system produces good results in low-noise conditions, 
and the trend is strong in noisy conditions, as the best 
result was obtained among the algorithms studied. 

The algorithm, moreover, took part in the evaluation 
arranged by the ECESS and obtained some fine results. 
The pitch detection system obtained the best results in 
19 of 32 sections evaluated. In terms of the accuracy of 
pitch values, it was the best of all in all channels, and 
obtained the best results over almost all measurements 
in noisy channels. 

By way of a follow-up to our research work, we 
wish to develop a number of ideas concerning certain 
improvements which could be made: 

• Examination of detection techniques to 
improve the weakest side of the algorithm: 
autocorrelation, filtering lower sound 
thresholds … 

• Entering the definition module information in 
the Viterbi algorithm cost functions. 

• Comparison with other algorithms and 
evaluation with other standard databases. 

VE+UE  comparison 

0
10
20
30
40
50
60
70
80
90

C0 C1 C2 C3 

[%] 

Aholab

GON

KOT

Praat

GEL+GEH conparison 

0

5

10

15

20

25

30

35

C0 C1 C2 C3 

[%] 

Aholab

Comparison of the difference in mean values

0

10

20

30

40

50

60

70

80

C0 C1 C2 C3 

Hz 
KOT

Praat

Aholab

GON

Hz

Aholab

GON

KOT

Praat

Comparison of differences in standard deviation

0
10
20
30
40
50
60
70
80
90

C0 C1 C2 C3 



 

  © Mendebalde Kultura Alkartea, 2008 92 

5. Acknowledgements 

E. Navas, I. Hernáez, I. Luengo, J. Sánchez, I. 
Saratxaga. (2005). Analysis of the Suitability of 
Common Corpora for Emotional Speech Modeling in 
Standard Basque. Lecture Notes in Artificial 
Intelligence, LNAI 3658, pp. 265-272.  

 
H.C.H. Huang, F. Seide. (2000).  Pitch tracking and 
tone features for Mandarin speech recognition. 
Procs. ICASSP 2000. Estambul. pp. 1523 - 1526 
vol.3.  

 
H. Ney, D. Suendermann, A. Bonafonte, H. Hoege. 

(2004). A first step towards text-independent voice 
conversion. Procs. INTERSPEECH 2004, Jeju, 
Corea. pp. 1173-1176.  

 
S. Kim, T. Eriksson, H.G. Kang, D.H. Youn. (2004). 
Pitch Synchronous Feature Extraction Method for 
Speaker Recognition. Procs. ICASSP 2004. Montreal. 
pp. 405-408.  

 

I. Luengo, E. Navas, I. Hernáez. (2006). Effectiveness of 
Short-Term Prosodic Features for Speaker 
Verification. Procs. The Fundamentals of Verbal and 
Non-verbal Communication and the Biometrical 
Issue. Vietri sul Mare, Italia.  

 
B. Kotnik, H. Höge, Z. Kacic. (2006). Evaluation of 
Pitch Detection Algorithms in Adverse Conditions. 
Procs. 3rd International Conference on Speech 
Prosody, Dresden, Alemania, pp. 149-152.  

 
M. K. Sonmez, L. Heck, M. Weintraub, E. Shriberg. 

(1997). A lognormal tied mixture model of pitch for 
prosody-based speaker recognition. Procs. 
EUROSPEECH '97. Rodas, Grecia. vol. 3, pp. 
1391-1394.  

 

D.J. Iskra et al. (2002). SPEECON - Speech Databases 
for Consumer Devices: Database Specification and 
Validation. Procs.  LREC'2002. Las Palmas de Gran 
Canaria. pp. 329-333.  

 
X. Sun. (2002). Pitch Determination and Voice Quality 
Analysis Using Subharmonic-To-Harmonic Ratio. 
Procs. ICASSP 2002. Orlando, EEUU. pp. 333-336.  

 
 P. Boersma, D. Weenink. Praat: doing phonetics by 
computer (Version 4.3) [Computer program]. 
Retrieved from http://www.praat.org/ 

 
P. Boersma. (1993). Accurate short term analysis of the 
fundamental frequency and the harmonics-to-noise 
ratio of a sampled sound. Procs. Institute of Phonetic 
Sciences 17. Univ. Amsterdam. pp. 97-110.  

 
 

V. Goncharoff, P. Gries. (1998). An Algorithm for 

Accurately Marking Pitch Pulses in Speech Signals. 

IASTED International conference SIP ’98. Nevada, 

USA. 


